
  Externalities in Cake Cutting  

Fundamental problem in fair division; models the allocation of a 
divisible resource (time, land, computer memory) among agents 
with heterogeneous preferences.

 The cake is the interval [0, 1]

  Set of agents N = {1, ..., n}

  Each agent i has valuation function Vi 
over the cake, which is the integral of a value density function vi

 A piece of cake is a finite union of disjoint subintervals of [0,1].

 The valuation of agent i for a piece X is given by the integral of 
their density function over the piece:

 An allocation A = (A1, ..., An) is an assignment of pieces to agents 
such that each agent i receives piece Ai and all the Ai are disjoint.

Cake Cutting

Externalities

 The optimal allocation of one agent can require infinitely many cuts:
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 Allocation A is proportional if Vi(Ai) ≥ 1/n, i  N and ∀ ∈ envy-free if 
Vi(Ai) ≥ Vi(Aj), i,j  N.∀ ∈

Properties

Proportionality: 

 Allocation A is proportional if Vi(A) ≥ 1/n, i  N∀ ∈

Swap Envy-Freeness:

 Allocation A is swap envy-free if 

Vi,i(Ai) + Vi,j(Aj) ≥ Vi,i(Aj) + Vi,j(Ai), i,j  N∀ ∈

Swap Stability:

 Allocation A is swap stable if 

Vi,j(Aj) + Vi,k(Ak) ≥ Vi,j(Ak) + Vi,k(Aj), i,j,k  N∀ ∈

 Also known as transaction spillovers: third parties are influenced 
by transactions they did not agree to

➢ Negative externalities: pollution, smoking, risky choices (e.g. 
drinking and driving), overfishing
➢ Positive externalities: education, immunization, environmental 
cleanup, research (!)

Simina Brânzei Ariel Procaccia  Jie Zhang 
simina@cs.au.dk arielpro@cs.cmu.edu jiezhang@cs.au.dk

 Common assumption in resource allocation: an agent's welfare is not 
affected by the consumption bundles of others (no externalities)
 Envy is about externalities: agents compare their own allocations 

with those of others.
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 All the discrete cake cutting protocols interact with the players 
using two types of queries:

➢ Cuti(x, α): Agent i returns y such that Vi([x, y]) = α
➢ Evaluatei(x, y): Agent i returns α such that Vi([x, y]) = α

Query Model (Robertson & Webb)

Externalities in Cake Cutting

Example: Cut and Choose

Player 1 cuts the cake in two equal pieces
Player 2 chooses his favorite piece

Player 1 takes the remainder

 Generalized model to capture externalities when there are synergies 
between agents (e.g. altruism).
 Each agent has several value densities: Vi,j(X) is the value agent i 

gets from the allocation of piece X to agent j

Fairness Criteria

Existence: Swap-stability implies swap envy-freeness and 
proportionality; swap envy-freeness and proportionality are unrelated

Lower bounds: A swap envy-free and proportional allocation can 
require strictly more than n-1 cuts

Upper bounds: Swap-stable allocations (which are also proportional 
and swap envy-free) are guaranteed to exist and require at most 
(n-1)n2 cuts when the value densities are continuous

Query Model with Externalities
 Extended Robertson-Webb:

➢ Cuti,j(x, α): Agent i returns y such that Vi,j([x, y]) = α
➢ Evaluatei,j(x, y): Return α such that Vi,j([x, y]) = α

 An allocation that guarantees 1/n2 to each agent can be computed 
with O(n2) queries in the extended Robertson-Webb model

 Alternative:
➢ Cut Optimali(x, α): Agent i outputs y such that i's optimal 
allocation on [x, y], Aα, gives the agent exactly α: Vi(Aα) = α
➢ Evaluate Optimali,j(x, y): Agent i outputs pair (Aα, α) such that 
Aα is an optimal allocation for i on [x, y] and Vi(Aα) = α

 Every proportional protocol from the standard model translates to a 
proportional protocol with externalities when the Cut and Evaluate 
queries are replaced by Cut Optimal and Evaluate Optimal.

 The value of agent i under an allocation A is:

 But there is no finite protocol that can compute a proportional 
allocation even for two agents in the extended Robertson-Webb model.
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